43 research outputs found

    The Dust Distribution Immediately Surrounding V Hydrae

    Get PDF
    Dust surrounding the star V Hydrae has been measured at a 11.15 μm wavelength using the three-telescope Infrared Spatial Interferometer (ISI). The narrowband heterodyne detection system is tuned to a region free of spectral lines due to molecules surrounding the star, and only continuum radiation from the dust and star is measured. Closure-phase data show that the dust is symmetrically distributed around the star. Results obtained in 2006–2007 are well fitted by a model with a Gaussian intensity distribution with HWHM of 49 mas that contributes 0.52 of the total flux and by a uniform disk of radius 287 mas with a total flux fraction of 0.26; the remaining 0.22 of the total flux is due to the star, which is unresolved. Visibility measurements conducted in 1997 show a substantial difference from those of 2006–2007, indicating that the star was surrounded by more dust in 1997

    Recent Observations of Betelgeuse and New Instrumentation at the ISI

    Get PDF
    The Infrared Spatial Interferometer (ISI) has been conducting mid-infrared observations of late-type stars for about 18 years. A long-term set of diameter measurements of Betelgeuse at 11.15 μm shows pronounced changes in the stellar size over time. These changes may arise from variations in the opacity of the environment immediately surrounding the star. New instrumentation is being developed to identify the composition and kinematics of the circumstellar environment of Betelgeuse, and of other late-type stars. A digital spectrometer-correlator is being built and tested that will enable visibility measurements on and off individual molecular spectral lines. Results from testing the spectrometer system are presented

    A Systematic Change with Time in the Size of Betelgeuse

    Get PDF
    The diameter of Betelgeuse (α Orionis) has been measured at a wavelength of 11.15 μm using the Infrared Spatial Interferometer over the past 15 years. During this 1993-2009 time period the star's size has decreased systematically by 15%

    The non-uniform, dynamic atmosphere of Betelgeuse observed at mid-infrared wavelengths

    Get PDF
    We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 microns wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of ~1 at 11.15 microns, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse, and mass-loss processes.Comment: 13 pages, 5 figures, in press (ApJ

    Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-Frequency SiO Masers

    Full text link
    We present Submillimeter Array observations of high frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J=5-4, v=1 28SiO and v=0 29SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5-60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distribution and that they appear to avoid each other. Additionally, emission from the SO 5_5-4_4 line was imaged for both sources. Around W Hya we find a clear offset between the red- and blue-shifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.Comment: 8 pages, 7 figures, accepted for publication in ApJ. Online table will be available with published versio

    Michelson Interferometry with the Keck I Telescope

    Get PDF
    We report the first use of Michelson interferometry on the Keck I telescope for diffraction-limited imaging in the near infrared JHK and L bands. By using an aperture mask located close to the f/25 secondary, the 10 m Keck primary mirror was transformed into a separate-element, multiple aperture interferometer. This has allowed diffraction-limited imaging of a large number of bright astrophysical targets, including the geometrically complex dust envelopes around a number of evolved stars. The successful restoration of these images, with dynamic ranges in excess of 200:1, highlights the significant capabilities of sparse aperture imaging as compared with more conventional filled-pupil speckle imaging for the class of bright targets considered here. In particular the enhancement of the signal-to-noise ratio of the Fourier data, precipitated by the reduction in atmospheric noise, allows high fidelity imaging of complex sources with small numbers of short-exposure images relative to speckle. Multi-epoch measurements confirm the reliability of this imaging technique and our whole dataset provides a powerful demonstration of the capabilities of aperture masking methods when utilized with the current generation of large-aperture telescopes. The relationship between these new results and recent advances in interferometry and adaptive optics is briefly discussed.Comment: Accepted into Publications of the Astronomical Society of the Pacific. To appear in vol. 112. Paper contains 10 pages, 8 figure

    Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes?:Systematic review

    Get PDF
    background: It is unclear whether more timely cancer diagnosis brings favourable outcomes, with much of the previous evidence, in some cancers, being equivocal. We set out to determine whether there is an association between time to diagnosis, treatment and clinical outcomes, across all cancers for symptomatic presentations. methods: Systematic review of the literature and narrative synthesis. results: We included 177 articles reporting 209 studies. These studies varied in study design, the time intervals assessed and the outcomes reported. Study quality was variable, with a small number of higher-quality studies. Heterogeneity precluded definitive findings. The cancers with more reports of an association between shorter times to diagnosis and more favourable outcomes were breast, colorectal, head and neck, testicular and melanoma. conclusions: This is the first review encompassing many cancer types, and we have demonstrated those cancers in which more evidence of an association between shorter times to diagnosis and more favourable outcomes exists, and where it is lacking. We believe that it is reasonable to assume that efforts to expedite the diagnosis of symptomatic cancer are likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis and improved quality of life, although these benefits vary between cancers

    Planet formation imager: Project update

    Get PDF
    The Planet Formation Imager (PFI) is a near- and mid-infrared interferometer project with the driving science goal of imaging directly the key stages of planet formation, including the young proto-planets themselves. Here, we will present an update on the work of the Science Working Group (SWG), including new simulations of dust structures during the assembly phase of planet formation and quantitative detection efficiencies for accreting and non-accreting young exoplanets as a function of mass and age. We use these results to motivate two reference PFI designs consisting of a) twelve 3m telescopes with a maximum baseline of 1.2km focused on young exoplanet imaging and b) twelve 8m telescopes optimized for a wider range of young exoplanets and protoplanetary disk imaging out to the 150K H2O ice line. Armed with 4 x 8m telescopes, the ESO/VLTI can already detect young exoplanets in principle and projects such as MATISSE, Hi-5 and Heimdallr are important PFI pathfinders to make this possible. We also discuss the state of technology development needed to make PFI more affordable, including progress towards new designs for inexpensive, small field-of-view, large aperture telescopes and prospects for Cubesat-based space interferometry
    corecore